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Volatility behavior and forecasting

Time variation in return volatility and correlation

Time variation in return volatility

Volatility forecasts

� A major departure from standard model: risk or volatility changes
over time

� Volatility, unlike return, not directly observable, must be estimated
� Challenge: method for estimating volatility that captures typical

patterns of volatility

� Recent past and long-term volatility help predict future volatility
� But: while estimators efficacious for forecasting near-term volatility,

they often miss sharp changes in volatility

� Second-moment efficiency: option market does less-poor job
forecasting return variance than forward markets of forecasting mean
return
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Time variation in return volatility and correlation

Time variation in return volatility

Typical patterns of volatility behavior over time

Persistence: volatility tends to stay near its current level

� Periods of high or low volatility tend to be enduring
� Once a large-magnitude return shocks volatility higher, volatility
persists at its higher level

� Magnitude or square of return as well as return volatility display
positive autocorrelation

Abrupt changes in volatility are not unusual

� Together with persistence, leads to volatility clustering or
volatility regimes

� Shifts from low to high volatility are more abrupt, while shifts from
high to low volatility are more gradual

Long-term mean reversion: volatility of an asset’s return tends to
gravitate to a long-term level

� In turn implies a term structure of volatility: different current
estimates of volatility for different time horizons
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Time variation in return volatility

Volatility of oil prices 1986-2018
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Prices and returns of Cushing, OK West Texas Intermediate (WTI) crude oil. 99.9
percent confidence interval calculated using daily EWMA volatility estimate (decay
factor λ = 0.94). Daily, 02Jan1986–16Jan2018. Data source: U.S. Energy Information
Administration (https://www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm).
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Time variation in return volatility and correlation

Time variation in return volatility

Conditional volatility

� Volatility regimes suggest use of conditional volatility: estimate
weighted toward more recent information

� Formally, volatility forecasts based on some information (“shocks” or
“innovations”) up to present time t

� σt ≡ current estimate of future return volatility based on (a model
and) information through time t

� What new information drives σt? In most models:
� Magnitude (and possibly the sign) of recent returns
� Recent estimates of volatility

� Term structure of volatility, e.g. weekly volatility higher or lower
than daily

� Typically, volatility expected to rise (fall) when low (high) relative to
long-term average level
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Time variation in return volatility and correlation

Time variation in return correlation

Impact of time-varying correlation

� Like volatility, correlations vary over time

� Correlations have strong impact on portfolio returns, hedged
positions

� Abrupt changes in correlation during periods of financial stress→
� Failure of hedging strategies
� Diminution of diversification benefits

� “Risk-on risk-off” behavior: tendency for correlations across many
assets to rise when risk appetites diminish in stress periods

� Examples:
� Increase in return correlations among equities
� Higher correlation between equity returns, Treasury yields
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Time variation in return volatility and correlation

Time variation in return correlation

Time-varying correlation of stock and bond returns

� Persistent changes over time in general level of correlation between
of stock and bond returns

� 1960s-1990s: generally negative
� 1990s-: generally positive

� Experience during the inflation and disinflation from late 1960s
� Rising rates driven by rising inflation expectations, associated with

adverse impact on economic growth
� “Fed model”: increase in discount rate for future earnings reduces

present value

� Experience once low-inflation monetary policy fully credible
� Rising rates driven by increases in anticipated real returns (r∗),

associated with poitive impact on economic growth
� Risk-on risk-off: investors reduce allocations to risky in favor of safe

assets

� N.B. positive correlation of equity returns and yield changes
corresponds to negative correlation of stock and bond returns
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Time variation in return correlation

Correlation of stock returns and rates 1962-2020
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Upper panel: constant-maturity yield of 10-year U.S. Treasury note, year-over-year
CPI-U inflation, log of S&P 500 index. Lower panel: correlation between log S&P
price return and changes in 10-year yield (estimated via EWMA with decay factor
λ = 0.97). Vertical shading represents NBER recession dates. Weekly data,
05Jan1962 to 11Sep2020. Data source: Bloomberg L.P.
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Time variation in return volatility and correlation

Volatility forecasting
Simple approaches conditional volatility estimation
GARCH
The exponentially-weighted moving average model
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Volatility behavior and forecasting

Volatility forecasting

Simple approaches conditional volatility estimation

Using conditional volatility estimators

� General approach: revise most recent estimate of volatility based on
most recent return data

� Simplified notation when working with daily data: return from
yesterday’s to today’s close

rt ≡ rt−1,t ≡ ln(St)− ln(St−1)

� At close of each day t, use rt to update yesterday’s volatility
estimate σt−1

� Use the new estimate σt to measure risk or forecast volatility over
the next business day t + 1

� Volatility forecast horizon includes trading days, not calendar time
� Price can change only when market open
� �Holding period and cash flows accrue every calendar day

12/32
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Volatility forecasting

Simple approaches conditional volatility estimation

Volatility is easier to estimate than mean

� Imagine asset return approximately follows diffusion with drift
� Observed at regular intervals over a period of time
� Drift and volatility may change over time, but slowly

� You only observe one sample path in real history

� The only information on mean/drift is return over entire period

� But finer intervals—every 5 min. instead of daily—provide more
information on volatility

� Finer intervals provide more information on tendency to wander
� Confidence interval of volatility estimate→ 0
� But not confidence interval of mean estimate

� Tail risk very hard to estimate
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Volatility forecasting

Simple approaches conditional volatility estimation

Zero-mean assumption

� A typical risk-measurement modeling choice:
� Estimate return volatility
� But assume mean return = 0

� In lognormal model, assume drift μ = 0 ⇒:
� Mean logarithmic return μ = 0

rt,t+τ = ln(St+τ )− ln(St) ∼ N (0, σ2τ )

� But discrete returns have non-zero mean due to Jensen’s Inequality
term:

E [St+τ ] = Ste
1
2
σ2τ
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Volatility forecasting

Simple approaches conditional volatility estimation

Why assume zero-mean returns?

� Because we can:
� Small impact of mean on volatility over short intervals
� But: mean return increases linearly with time, return volatility

increases as square root of time
� ⇒Over longer periods, mean has larger impact than volatility

� Because we must:
� Expected return very hard to measure
� Estimation of mean introduces additional source of statistical error

into variance estimate
� Bad enough to assume return normality, let’s not also invent mean
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Volatility behavior and forecasting

Volatility forecasting

Simple approaches conditional volatility estimation

Square-root-of-time rule

� In standard (→)geometric Brownian motion model, variance (vol
squared) of price change proportional to time elapsed

� Position after t time units

St ∼ N (0, t)

� Together with martingale property

St+τ − St ∼ N (0, τ )

� Carries over to standard lognormal/geometric Brownian motion
model: variance increases in proportion to time elapsed

� ⇒Vol increases in proportion to square root of time elapsed

� Useful rule-of-thumb even if returns only approximately lognormal
� But assumes constant return volatility, i.e. flat term structure of

volatility
� At odds with changes in volatility over time and with long-term

mean reversion
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Volatility forecasting

Simple approaches conditional volatility estimation

Applying the square-root-of-time rule

� Volatility forecast horizon includes trading days, not calendar time
� Typical year includes about 250-255 trading days
� Assume 256 trading days,

√
256 = 16

� Annualized volatility ≈ 16×daily volatility

� Examples:
� Long-term average annual volatility of U.S. stock indexes ≈ 16− 20

percent⇒daily vol ≈ 1− 1.25 percent
� Swaption normal volatility 80 bps⇒daily vol 5 bps
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Volatility forecasting

Simple approaches conditional volatility estimation

Simple conditional volatility estimators
Use moving window incorporating past m trading days’ returns

Root mean square: square root of the sum of squared returns
(deviations from zero) divided by the number of observations

σt =

√√√√ 1

m

m∑
τ=1

r2t−m+τ

� Incorporates assumption of zero mean return

Standard deviation: the square root of the sum of squared deviations
from the mean return r̄t =

1
m

∑m
τ=1 rt−m+τ divided by the number of

observations minus 1

σt =

√√√√ 1

m − 1

m∑
τ=1

(rt−m+τ − r̄t)2,

� Bias-corrected for 1 degree of freedom lost due to use of r̄t
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Volatility forecasting

GARCH

GARCH model of volatility
� Generalized autoregressive conditionally heteroscedastic model
� Volatility driven by

� Recent volatility
� Recent returns
� Long-term “point of rest” of volatility or “forever vol” σ̄

� Estimate σt made at today’s close updates yesterday’s estimate σt−1

with latest return rt
� Look back one period→GARCH(1,1):

σ2
t = αr2t + βσ2

t−1 + γσ̄2

� Feedback to returns via “shock” or “innovation” εt

rt = εtσt−1,

� Today’s return rt the only pertinent new information on date t
� εt assumed i.i.d. with mean 0 and variance 1
� εt together with current volatility σt−1 determines new return rt
� rt random but not “free,” set by current vol and random shock εt

� The weights satisfy α, β, γ > 0 and α+ β + γ = 1
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Volatility forecasting

GARCH

Role of parameters in the GARCH model

� Impact of α: high α ⇒
� Large rt causes large, immediate change in estimated return volatility

σt

� Wider range of variation of σt over time

� Impact of β: high β ⇒
� σt and deviations from σ̄2 very persistent
� Less variation of σt over time

� Long-term variance σ̄2 > 0
� Presence of σ̄2 generates a term structure of volatility
� Example: σ̄2 approximately 1.0–1.15 percent for U.S. equity market

(at daily rate)

� Low γ ⇒ little mean reversion

� Estimates of β generally not very far from 1, α+ β quite close to 1

� Estimated parameter values lead to (hopefully realistic) behavior of
volatility
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Volatility forecasting

GARCH

Estimating GARCH(1,1) model parameters
� Maximum likelihood method a standard approach

� Assume conditional normality, shocks εt normally distributed, a
stronger assumption than i.i.d.:

εt ∼ N (0, 1) ∀t
� Joint normal density of m return observations⇒log likelihood

function
m∑

τ=1

[
− ln(σ2

t−τ )− r2t
σ2
t−τ

]
,

with initial volatility value σ0

� Use numerical search procedure to find parameters that maximize
log likelihood function

� Numerical search procedure can be sensitive to initial trial guess
� ω ≡ γσ̄2 treated as a single parameter
� γ can then be recovered as 1− α− β and

σ̄ =

√
ω

1− α− β
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Volatility forecasting

GARCH

Influence of past returns in GARCH model
� GARCH(1,1) formula can be recast in terms of most recent and past
squared returns (setting m = t):

σ2
1 = αr21 + βσ2

0 + ω

σ2
2 = αr22 + βσ2

1 + ω = αr22 + β(αr21 + βσ2
0 + ω) + ω

= αr22 + αβr21 + β2σ2
0 + (1 + β)ω

...

σ2
t = αΣt

τ=1β
t−τ r2τ +Σt

τ=1β
t−τω + βtσ2

0

≈ αΣt
τ=1β

t−τ r2τ +
1

1− β
ω

� α < 1, β < 1 ⇒ small influence of more remote past returns,
starting value σ0

� Tradeoff bet influence of long-term variance and that of most recent
volatility estimate
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Volatility forecasting

GARCH

Example of GARCH(1,1) model estimation

� Applied to S&P 500 index, using m + 1 = 3651 closing-price
observations 30Jun2005 to 31Dec2019

� r21 used as starting value σ0

� Can also use sample variance of entire time series

� For each pass of the search procedure, successively apply
GARCH(1,1) formula to calculate trial values σ1, σ2, . . . , σt :

Parameter estimates

α 0.12195 β 0.85609
ω 2.40805×10−6 σ̄ (%) 1.04715
γ 0.02196

� Practical application: (re-)estimate parameters infrequently, but use
estimated model regularly to forecast volatility
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Volatility forecasting

The exponentially-weighted moving average model

Exponentially-weighted moving average model

� Exponentially-weighted moving average (EWMA)
� A.k.a. RiskMetrics model
� Variance a weighted average of past returns
� Weights smaller for more-remote past returns

� Single parameter: decay factor λ
� Low λ: rapid adaptation to recent returns
� High λ: slow adaptation to recent returns

� EWMA implies a flat term structure of volatility
� Volatility follows square-root-of-time rule
� Volatility behaves as a random walk, subject to shocks

� Decay factor estimation: λ that minimizes forecast errors, e.g. RMS
criterion

� Decay factor may also be chosen judgmentally

24/32



Volatility behavior and forecasting

Volatility forecasting

The exponentially-weighted moving average model

Estimating volatility with the EWMA model

� Typically, assume a value for parameter λ rather than estimate it,
and apply a formula

� Current volatility estimate σt uses m most recent observed returns
rt−m+1, . . . , rt

� Treat λ as known parameter
� Weight on each squared return 1−λ

1−λm λ
m−τ , τ = 1, . . . ,m

� Apply λm−m = 1 for τ = m, most recent (time t) return
� Apply λm−1 ≈ 0 for τ = 1, most remote (time t −m + 1) return

σ2
t =

1− λ

1− λm

m∑
τ=1

λm−τ r2t−m+τ

� 1− λm ≈ 1 ⇒
σ2
t ≈ (1− λ)

m∑
τ=1

λm−τ r2t−m+τ

� m doesn’t have to be large
� m ≈ 100 more than adequate unless λ quite close to 1
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Volatility forecasting

The exponentially-weighted moving average model

The EWMA model weighting scheme
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The graph displays the values of the last 100 of m = 250 EWMA weights 1−λ
1−λm λm−τ

for λ = 0.94 and λ = 0.97.
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Volatility forecasting

The exponentially-weighted moving average model

Choosing the decay factor
� Low λ ⇒recent observations have greater weight:

� Volatility changes rapidly
� Recent observations have most information useful for short-term

conditional volatility forecasting

� Low λ effectively shortens historical sample size compared to high λ

� Estimates using low λ much more variable than those using high λ

� Estimates using low λ respond more rapidly to new information
� Estimates using low λ may move in the opposite direction from
those using high λ

� Estimates using low λ decline after a sequence of high-magnitude
returns, while those using high λ still rising in response

� No agreed method for estimating λ

� Widely adopted standard settings for decay factor:
� λ = 0.94 for short-term (e.g. one-day) forecasts
� λ = 0.97 for medium-term (e.g. one-month) forecasts
� Minimizes RMS of forecast errors for range of assets in original 1994

RiskMetrics study
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Volatility forecasting

The exponentially-weighted moving average model

Effect of the decay factor on the volatility forecast
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EWMA estimates of the volatility of daily S&P 500 index returns 01Jul2005 to
31Dec2019, at a daily rate in percent, using decay factors of λ = 0.94 and λ = 0.99.
Points represent the absolute value of daily return observations.
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Volatility forecasting

The exponentially-weighted moving average model

Estimating volatility with the EWMA model

τ Date St+τ−m rt+τ−m
1−λ
1−λm λm−τ 1−λ

1−λm λm−τ r2t+τ−m

0 21Jul2014 1973.63 NA NA NA
1 22Jul2014 1983.53 0.00500 0.00000 0.00000×10−6

2 23Jul2014 1987.01 0.00175 0.00000 0.00000×10−6

3 24Jul2014 1987.98 0.00049 0.00000 0.00000×10−6

4 25Jul2014 1978.34 -0.00486 0.00000 0.00000×10−6

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

173 27Mar2015 2061.02 0.00237 0.00051 0.00286×10−6

174 30Mar2015 2086.24 0.01216 0.00054 0.08052×10−6

175 31Mar2015 2067.89 -0.00883 0.00058 0.04520×10−6

176 01Apr2015 2059.69 -0.00397 0.00062 0.00973×10−6

177 02Apr2015 2066.96 0.00352 0.00066 0.00814×10−6

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

246 13Jul2015 2099.60 0.01101 0.04684 5.67368×10−6

247 14Jul2015 2108.95 0.00444 0.04984 0.98391×10−6

248 15Jul2015 2107.40 -0.00074 0.05302 0.02866×10−6

249 16Jul2015 2124.29 0.00798 0.05640 3.59398×10−6

250 17Jul2015 2126.64 0.00111 0.06000 0.07335×10−6

Return vol of the S&P 500 index, estimated after the close on 17Jul2015 (date t), with m = 250,
λ = 0.94. Return (4th column) expressed as a decimal. Add the 250 values in the last column to

get the estimated variance σ2
t .
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Volatility forecasting

The exponentially-weighted moving average model

Recursive formula for EWMA volatility estimates
� Recursive formula updates most recent volatility estimate with new
data on return magnitude

σ2
t = λσ2

t−1 + (1− λ)r2t

� →Easy computation technique, very close to result of full EWMA
weighting scheme

� Shows similarity of EWMA to “one-parameter” GARCH
� But with long-term volatility term γ = 0, α+ β = 1
� λ analogous to β, 1− λ analogous to α
� Shocks to volatility permanent, no long-term “forever” vol
� Also known as integrated GARCH or IGARCH(1,1)

� EWMA estimate usually close to unrestricted GARCH(1,1) estimate

� “Starter value” (orange in example on next slide):
� Root mean square, using first 21 days of data
� Starter value method not crucial, converges quickly (esp. for low λ)
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Volatility forecasting

The exponentially-weighted moving average model

Recursive formula for EWMA volatility estimates

t Date St rt (%) λσ2
t−1 (1− λ)r2t σt (%)

1 30Jun2005 1191.33 NA NA NA 0.55583
2 01Jul2005 1194.44 0.2607 0.29041×10−4 0.40783×10−6 0.54267
3 05Jul2005 1204.99 0.8794 0.27682×10−4 4.63987×10−6 0.56853
4 06Jul2005 1194.94 -0.8375 0.30383×10−4 4.20873×10−6 0.58815
5 07Jul2005 1197.87 0.2449 0.32516×10−4 0.35986×10−6 0.57338
6 08Jul2005 1211.86 1.1611 0.30903×10−4 8.08946×10−6 0.62444
7 11Jul2005 1219.44 0.6235 0.36653×10−4 2.33279×10−6 0.62439
...
...

...
...

...
...

...
3644 19Dec2019 3205.37 0.4449 0.24206×10−4 1.18778×10−6 0.50392
3645 20Dec2019 3221.22 0.4933 0.23870×10−4 1.45986×10−6 0.50329
3646 23Dec2019 3224.01 0.0866 0.23810×10−4 0.04497×10−6 0.48842
3647 24Dec2019 3223.38 -0.0195 0.22424×10−4 0.00229×10−6 0.47356
3648 26Dec2019 3239.91 0.5115 0.21080×10−4 1.56983×10−6 0.47592
3649 27Dec2019 3240.02 0.0034 0.21291×10−4 0.00007×10−6 0.46142
3650 30Dec2019 3221.29 -0.5798 0.20014×10−4 2.01673×10−6 0.46937
3651 31Dec2019 3230.78 0.2942 0.20709×10−4 0.51921×10−6 0.46074

Return vol of the S&P 500 index, estimated daily using the recursive formula, with
λ = 0.94. Initial vol estimate: RMS of the 20 daily returns 01Jul2005–29Jul2005.
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Volatility forecasting

The exponentially-weighted moving average model

GARCH(1,1) and EWMA volatility estimates
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EWMA GARCH(1,1)
Daily estimates of S&P 500 index’s annualized return volatility, 30Jun2005 to
31Dec2019. EWMA estimates with λ = 0.94 GARCH(1,1) estimates use parameters
α = 0.12195, β = 0.85609, γσ̄2 = 2.40805 × 10−6. The annualized realized return
volatility was 15.69 percent over the period.
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