#### Lecture notes on risk management, public policy, and the financial system Volatility behavior and forecasting

Allan M. Malz

Columbia University

Volatility forecasting

#### Time variation in return volatility and correlation

Time variation in return volatility Time variation in return correlation

Volatility forecasting

L Time variation in return volatility

# **Volatility forecasts**

- A major departure from standard model: *risk* or *volatility changes over time*
- Volatility, unlike return, not directly observable, must be estimated
  - Challenge: method for estimating volatility that captures typical patterns of volatility
- Recent past and long-term volatility help predict future volatility
  - But: while estimators efficacious for forecasting near-term volatility, they often miss sharp changes in volatility
- Second-moment efficiency: option market does less-poor job forecasting return variance than forward markets of forecasting mean return

Time variation in return volatility

# Typical patterns of volatility behavior over time

Persistence: volatility tends to stay near its current level

- · Periods of high or low volatility tend to be enduring
- Once a large-magnitude return shocks volatility higher, volatility persists at its higher level
- Magnitude or square of return as well as return volatility display positive **autocorrelation**

Abrupt changes in volatility are not unusual

- Together with persistence, leads to volatility clustering or volatility regimes
- Shifts from low to high volatility are more abrupt, while shifts from high to low volatility are more gradual

Long-term mean reversion: volatility of an asset's return tends to gravitate to a long-term level

• In turn implies a **term structure of volatility:** different current estimates of volatility for different time horizons

— Time variation in return volatility

### Volatility of oil prices 1986-2018



Prices and returns of Cushing, OK West Texas Intermediate (WTI) crude oil. 99.9 percent confidence interval calculated using daily EWMA volatility estimate (decay factor  $\lambda = 0.94$ ). Daily, 02Jan1986–16Jan2018. *Data source*: U.S. Energy Information Administration (https://www.eia.gov/dnav/pet/pet\_pri\_spt\_s1\_d.htm).

Time variation in return volatility

# **Conditional volatility**

- Volatility regimes suggest use of **conditional volatility**: estimate weighted toward more recent information
- Formally, volatility forecasts based on some information ("shocks" or "innovations") up to present time t
  - $\sigma_t \equiv$  current estimate of future return volatility based on (a model and) information through time t
- What new information drives  $\sigma_t$ ? In most models:
  - Magnitude (and possibly the sign) of recent returns
  - Recent estimates of *volatility*
- Term structure of volatility, e.g. weekly volatility higher or lower than daily
  - Typically, volatility expected to rise (fall) when low (high) relative to long-term average level

Time variation in return correlation

# Impact of time-varying correlation

- Like volatility, correlations vary over time
- Correlations have strong impact on portfolio returns, hedged positions
- Abrupt changes in correlation during periods of financial stress  $\rightarrow$ 
  - Failure of hedging strategies
  - Diminution of diversification benefits
- "Risk-on risk-off" behavior: tendency for correlations across many assets to rise when risk appetites diminish in stress periods
- Examples:
  - Increase in return correlations among equities
  - · Higher correlation between equity returns, Treasury yields

Time variation in return volatility and correlation

Time variation in return correlation

# Time-varying correlation of stock and bond returns

- Persistent changes over time in general level of correlation between of stock and bond returns
  - 1960s-1990s: generally negative
  - 1990s-: generally positive
- Experience during the inflation and disinflation from late 1960s
  - Rising rates driven by rising inflation expectations, associated with adverse impact on economic growth
  - "Fed model": increase in discount rate for future earnings reduces present value
- Experience once low-inflation monetary policy fully credible
  - Rising rates driven by increases in anticipated real returns (*r*\*), associated with poitive impact on economic growth
  - Risk-on risk-off: investors reduce allocations to risky in favor of safe assets
- N.B. positive correlation of equity returns and yield changes corresponds to negative correlation of stock and bond returns

- Time variation in return volatility and correlation
  - Time variation in return correlation

#### Correlation of stock returns and rates 1962-2024



UST-SPX correlation — Core CPI inflation Upper panel: constant-maturity yield of 10-year U.S. Treasury note, year-over-year CPI-U inflation, log of S&P 500 index. Lower panel: correlation between log S&P price return and changes in 10-year yield (estimated via EWMA with decay factor  $\lambda = 0.97$ ). Vertical shading represents NBER recession dates. Weekly data, 05Jan1962 to 17May2024. Data source: Bloomberg L.P.

#### Volatility forecasting

Simple approaches conditional volatility estimation GARCH The exponentially-weighted moving average model

Volatility forecasting

Simple approaches conditional volatility estimation

# Using conditional volatility estimators

- General approach: revise most recent estimate of volatility based on most recent return data
- Simplified notation when working with daily data: return from yesterday's to today's close

$$r_t \equiv r_{t-1,t} \equiv \ln(S_t) - \ln(S_{t-1})$$

- At close of each day t, use  $r_t$  to update yesterday's volatility estimate  $\sigma_{t-1}$
- Use the new estimate  $\sigma_t$  to measure risk or forecast volatility over the next business day t+1
- Volatility forecast horizon includes trading days, not calendar time
  - Price can change only when market open
  - Holding period and cash flows accrue every calendar day
- Choice of return **frequency** used in estimates: weekly, daily, intra-day, etc.
  - Returns independent⇒return frequency doesn't affect volatility estimates over long periods
- Volatility typically calculated using daily close-to-close returns

Simple approaches conditional volatility estimation

## Volatility is easier to estimate than mean

- Imagine asset return approximately follows diffusion with drift
  - Observed at regular intervals over a period of time
  - Drift and volatility may change over time, but slowly
- You only observe one sample path in real history
- The only information on mean/drift is return over entire period
- But finer intervals—every 5 min. instead of daily—provide more information on volatility
  - Finer intervals provide more information on tendency to wander
  - Confidence interval of volatility estimate  $\rightarrow 0$
  - But not confidence interval of mean estimate
- Tail risk very hard to estimate

Simple approaches conditional volatility estimation

# Zero-mean assumption

- A typical risk-measurement modeling choice:
  - Estimate return volatility
  - But assume mean return = 0
- I.e. computed as **root mean square** rather than standard deviation of returns over sample period
- In lognormal model, assume drift  $\mu = 0 \Rightarrow$ :
  - Mean logarithmic return  $\mu = 0$

$$r_{t,t+ au} = \ln(S_{t+ au}) - \ln(S_t) \sim \mathcal{N}(0,\sigma^2 au)$$

• But discrete returns have non-zero mean due to Jensen's Inequality term:

$$\mathsf{E}\left[S_{t+\tau}\right] = S_t e^{\frac{1}{2}\sigma^2 \tau}$$

Simple approaches conditional volatility estimation

## Why assume zero-mean returns?

- Because we can:
  - Small impact of mean on volatility over short intervals
  - But: mean return increases linearly with time, return volatility increases as square root of time
  - $\Rightarrow$ Over longer periods, mean has larger impact than volatility
- Because we must:
  - Expected return very hard to measure
  - Estimation of mean introduces additional source of statistical error into variance estimate
  - Bad enough to assume return normality, let's not also assume a value for expected return
  - Consider a sequence of large price changes in the same direction:
    - Incorporating the mean return would misleadingly reduce the measured volatility
    - $(\rightarrow)$ Autocorrelation of returns

Simple approaches conditional volatility estimation

# Square-root-of-time rule

- In standard (→)geometric Brownian motion model, variance (vol squared) of price change proportional to time elapsed
  - Position after t time units

$$S_t \sim \mathcal{N}(0, t)$$

• Together with martingale property

$$S_{t+\tau} - S_t \sim \mathcal{N}(0, \tau)$$

- Carries over to standard lognormal/geometric Brownian motion model: variance increases in proportion to time elapsed
  - $\Rightarrow$ Vol increases in proportion to square root of time elapsed
- Useful rule-of-thumb even if returns only approximately lognormal
  - But assumes constant return volatility, i.e. flat term structure of volatility
  - At odds with changes in volatility over time and with long-term mean reversion

Simple approaches conditional volatility estimation

# Applying the square-root-of-time rule

- Volatility forecast horizon includes trading days, not calendar time
  - Typical year includes about 250-255 trading days
  - Assume 256 trading days,  $\sqrt{256} = 16$
  - Annualized volatility pprox 16×daily volatility
- Examples:
  - Long-term average annual volatility of U.S. stock indexes  $\approx 16-20$  percent $\Rightarrow$ daily vol  $\approx 1-1.25$  percent
  - Swaption normal volatility 80 bps⇒daily vol 5 bps

Volatility forecasting

Simple approaches conditional volatility estimation

## Simple conditional volatility estimators

Use moving window incorporating past m trading days' returns **Root mean square:** square root of the sum of squared returns (deviations from zero) divided by the number of observations

$$\sigma_t = \sqrt{\frac{1}{m} \sum_{\tau=1}^m r_{t-m+\tau}^2}$$

Incorporates assumption of zero mean return

**Standard deviation:** the square root of the sum of squared deviations from the mean return  $\bar{r}_t = \frac{1}{m} \sum_{\tau=1}^m r_{t-m+\tau}$  divided by the number of observations minus 1

$$\sigma_t = \sqrt{\frac{1}{m-1}\sum_{\tau=1}^m (r_{t-m+\tau} - \bar{r}_t)^2},$$

• Bias-corrected for 1 degree of freedom lost due to use of  $\bar{r}_t$ 

GARCH

# **GARCH** model of volatility

- Generalized autoregressive conditionally heteroscedastic model
- Volatility driven by
  - Recent volatility
  - Recent returns
  - Long-term "point of rest" of volatility or "forever vol"  $\bar{\sigma}$
- Estimate  $\sigma_t$  made at today's close updates yesterday's estimate  $\sigma_{t-1}$  with latest return  $r_t$
- Look back one period→GARCH(1,1):

$$\sigma_t^2 = \alpha r_t^2 + \beta \sigma_{t-1}^2 + \gamma \bar{\sigma}^2$$

• Feedback to returns via "shock" or "innovation"  $\epsilon_t$ 

$$r_t = \epsilon_t \sigma_{t-1},$$

- Today's return  $r_t$  the only pertinent new information on date t
  - $\epsilon_t$  assumed i.i.d. with mean 0 and variance 1
  - $\epsilon_t$  together with current volatility  $\sigma_{t-1}$  determines new return  $r_t$
  - $r_t$  random but not "free," set by current vol and random shock  $\epsilon_t$
- The weights satisfy  $\alpha,\beta,\gamma>$  0 and  $\alpha+\beta+\gamma=1$

GARCH

# Role of parameters in the GARCH model

- Impact of  $\alpha$ : high  $\alpha \Rightarrow$ 
  - Large  $r_t$  causes large, immediate change in estimated return volatility  $\sigma_t$
  - Wider range of variation of  $\sigma_t$  over time
- Impact of  $\beta$ : high  $\beta \Rightarrow$ 
  - $\sigma_t$  and deviations from  $\bar{\sigma}^2$  very persistent
  - Less variation of  $\sigma_t$  over time
- Long-term variance  $ar{\sigma}^2 > 0$ 
  - Presence of  $\bar{\sigma}^2$  generates a term structure of volatility
  - Example:  $\bar{\sigma}^2$  approximately 1.0–1.15 percent for U.S. equity market (at daily rate)
- Low  $\gamma \Rightarrow$  little mean reversion
- Estimates of eta generally not very far from 1, lpha+eta quite close to 1
- Estimated parameter values lead to (hopefully realistic) behavior of volatility

GARCH

# Estimating GARCH(1,1) model parameters

- Maximum likelihood method a standard approach
  - Assume conditional normality, shocks ε<sub>t</sub> normally distributed, a stronger assumption than i.i.d.:

$$\epsilon_t \sim \mathcal{N}(0, 1) \quad \forall t$$

Joint normal density of *m* return observations⇒log likelihood function

$$\sum_{\tau=1}^{m} \left[ -\ln(\sigma_{t-\tau}^2) - \frac{r_t^2}{\sigma_{t-\tau}^2} \right],$$

with initial volatility value  $\sigma_0$ 

- Use numerical search procedure to find parameters that maximize log likelihood function
  - Numerical search procedure can be sensitive to initial trial guess
  - $\omega \equiv \gamma \bar{\sigma}^2$  treated as a single parameter
  - $\gamma$  can then be recovered as 1-lpha-eta and

$$\bar{\sigma} = \sqrt{\frac{\omega}{1 - \alpha - \beta}}$$

#### GARCH

## Influence of past returns in GARCH model

• GARCH(1,1) formula can be recast in terms of most recent and past squared returns (setting *m* = *t*):

$$\begin{split} \sigma_1^2 &= \alpha r_1^2 + \beta \sigma_0^2 + \omega \\ \sigma_2^2 &= \alpha r_2^2 + \beta \sigma_1^2 + \omega = \alpha r_2^2 + \beta (\alpha r_1^2 + \beta \sigma_0^2 + \omega) + \omega \\ &= \alpha r_2^2 + \alpha \beta r_1^2 + \beta^2 \sigma_0^2 + (1 + \beta) \omega \\ \vdots \\ \sigma_t^2 &= \alpha \Sigma_{\tau=1}^t \beta^{t-\tau} r_{\tau}^2 + \Sigma_{\tau=1}^t \beta^{t-\tau} \omega + \beta^t \sigma_0^2 \\ &\approx \alpha \Sigma_{\tau=1}^t \beta^{t-\tau} r_{\tau}^2 + \frac{1}{1-\beta} \omega \end{split}$$

- $\alpha < 1, \beta < 1 \Rightarrow$  small influence of more remote past returns, starting value  $\sigma_0$
- Tradeoff between influence of long-term variance and that of most recent volatility estimate

GARCH

# Example of GARCH(1,1) model estimation

- Applied to S&P 500 index, using m + 1 = 3651 closing-price observations 30Jun2005 to 31Dec2019
- $r_1^2$  used as starting value  $\sigma_0$ 
  - Can also use sample variance of entire time series
- For each pass of the search procedure, successively apply GARCH(1,1) formula to calculate trial values σ<sub>1</sub>, σ<sub>2</sub>,..., σ<sub>t</sub>:

| Parameter estimates |                          |                    |         |  |  |  |  |
|---------------------|--------------------------|--------------------|---------|--|--|--|--|
| $\alpha$            | 0.12195                  | β                  | 0.85609 |  |  |  |  |
| ω                   | $2.40805 \times 10^{-6}$ | $\bar{\sigma}$ (%) | 1.04715 |  |  |  |  |
| $\gamma$            | 0.02196                  |                    |         |  |  |  |  |

• Practical application: (re-)estimate parameters infrequently, but use estimated model regularly to forecast volatility

The exponentially-weighted moving average model

# Exponentially-weighted moving average model

- Exponentially-weighted moving average (EWMA)
  - A.k.a. RiskMetrics model
  - Variance a weighted average of past returns
  - Weights smaller for more-remote past returns
- Single parameter: decay factor  $\lambda$ 
  - Low λ: rapid adaptation to recent returns
  - High  $\lambda$ : slow adaptation to recent returns
- Some limitations of EWMA:
  - EWMA implies a flat term structure of volatility
    - Volatility follows square-root-of-time rule
    - Volatility behaves as a random walk, subject to shocks
  - EWMA can't incorporate recurrent changes in volatility, e.g. earnings season

Volatility forecasting

The exponentially-weighted moving average model

# Estimating volatility with the EWMA model

- Typically, assume a value for parameter  $\lambda$  rather than estimate it, and apply a formula
- Current volatility estimate  $\sigma_t$  uses m most recent observed returns  $r_{t-m+1}, \ldots, r_t$ 
  - Treat  $\lambda$  as known parameter
  - Weight on each squared return  $\frac{1-\lambda}{1-\lambda^m}\lambda^{m- au}, au=1,\ldots,m$ 
    - Apply  $\lambda^{m-m} = 1$  for  $\tau = m$ , most recent (time t) return
    - Apply  $\lambda^{m-1} \approx 0$  for  $\tau = 1$ , most remote (time t m + 1) return

$$\sigma_t^2 = \frac{1-\lambda}{1-\lambda^m} \sum_{\tau=1}^m \lambda^{m-\tau} r_{t-m+\tau}^2$$

• 
$$1 - \lambda^m \approx 1 \Rightarrow$$
  
 $\sigma_i^2 \approx (1)$ 

$$\sigma_t^2 \approx (1-\lambda) \sum_{\tau=1}^m \lambda^{m-\tau} r_{t-m+\tau}^2$$

- *m* doesn't have to be large
  - mpprox 100 more than adequate unless  $\lambda$  quite close to 1

Volatility forecasting

The exponentially-weighted moving average model

## The EWMA model weighting scheme



days since return observation

The graph displays the values of the last 100 of m = 250 EWMA weights  $\frac{1-\lambda}{1-\lambda^m}\lambda^{m-\tau}$  for  $\lambda = 0.94$  and  $\lambda = 0.97$ .

The exponentially-weighted moving average model

# Impact of the decay factor

- Low λ ⇒recent observations have greater weight:
  - Volatility changes rapidly
  - Recent observations have most information useful for short-term conditional volatility forecasting
- Low  $\lambda$  effectively shortens historical sample size compared to high  $\lambda$
- Estimates using low  $\lambda$  much more variable than those using high  $\lambda$
- Estimates using low  $\lambda$  respond more rapidly to new information
- Estimates using low  $\lambda$  may move in the opposite direction from those using high  $\lambda$ 
  - Estimates using low  $\lambda$  decline after a sequence of high-magnitude returns, while those using high  $\lambda$  still rising in response

The exponentially-weighted moving average model

# Choosing the decay factor

- No agreed method for estimating  $\lambda$
- Decay factor estimation:  $\lambda$  that minimizes forecast errors, e.g. RMS criterion
- Decay factor may also be chosen judgmentally
- Widely adopted standard settings for decay factor:
  - $\lambda = 0.94$  for short-term (e.g. one-day) forecasts
  - $\lambda = 0.97$  for medium-term (e.g. one-month) forecasts
  - Minimizes RMS of forecast errors for range of assets in original 1994 RiskMetrics study

—The exponentially-weighted moving average model

#### Effect of the decay factor on the volatility forecast



EWMA estimates of the volatility of daily S&P 500 index returns 01Jul2005 to 31Dec2019, at a daily rate in percent, using decay factors of  $\lambda = 0.94$  and  $\lambda = 0.99$ . Points represent the absolute value of daily return observations.

The exponentially-weighted moving average model

## Estimating volatility with the EWMA model

| 0         21Jul2014         1973.63         NA         NA           1         22Jul2014         1983.53         0.00500         0.00000         0.00000           2         23Jul2014         1987.01         0.00175         0.00000         0.00000           3         24Jul2014         1987.98         0.00049         0.00000         0.00000           4         25Jul2014         1978.34         -0.00486         0.00000         0.00000           .         .         .         .         .         .         .           173         27Mar2015         2061.02         0.00237         0.00051         0.00286           174         30Mar2015         2066.24         0.01216         0.00054         0.08052           175         31Mar2015         2057.89         -0.00397         0.00058         0.04526           176         01Apr2015         2059.69         -0.00397         0.00066         0.00814           177         02Apr2015         2066.96         0.00352         0.00066         0.00844 | NA<br>$0 \times 10^{-6}$<br>$0 \times 10^{-6}$<br>$0 \times 10^{-6}$<br>$0 \times 10^{-6}$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 1       22Jul2014       1983.53       0.00500       0.00000       0.00000         2       23Jul2014       1987.01       0.00175       0.00000       0.00000         3       24Jul2014       1987.98       0.0049       0.00000       0.00000         4       25Jul2014       1978.34       -0.00486       0.00000       0.00000         .       .       .       .       .       .       .         173       27Mar2015       2061.02       0.00237       0.00051       0.00286         174       30Mar2015       2086.24       0.01216       0.00054       0.08052         175       31Mar2015       2067.89       -0.00883       0.00058       0.04520         176       01Apr2015       2059.69       -0.00397       0.00062       0.00973         177       02Apr2015       2066.96       0.00352       0.00066       0.00814                                                                                                                                                                                              | $0 \times 10^{-6}$<br>$0 \times 10^{-6}$<br>$0 \times 10^{-6}$<br>$0 \times 10^{-6}$       |
| 2       23Jul2014       1987.01       0.00175       0.00000       0.00000         3       24Jul2014       1987.98       0.00049       0.00000       0.00000         4       25Jul2014       1978.34       -0.00486       0.00000       0.00000                 173       27Mar2015       2061.02       0.00237       0.00051       0.00286         174       30Mar2015       2086.24       0.01216       0.00054       0.08052         175       31Mar2015       2067.89       -0.00883       0.00058       0.04520         176       01Apr2015       2059.69       -0.00397       0.00062       0.00973         177       02Apr2015       2066.96       0.00352       0.00066       0.00814                                                                                                                                                                                                                                                                                                                                 | $0 \times 10^{-6}$<br>$0 \times 10^{-6}$<br>$0 \times 10^{-6}$                             |
| 3       24Jul2014       1987.98       0.00049       0.00000       0.00000         4       25Jul2014       1978.34       -0.00486       0.00000       0.00000         .       .       .       .       .       .       .         173       27Mar2015       2061.02       0.00237       0.00051       0.00286         174       30Mar2015       2086.24       0.01216       0.00054       0.08052         175       31Mar2015       2067.89       -0.00883       0.00058       0.04520         176       01Apr2015       2059.69       -0.00397       0.00062       0.00973         177       02Apr2015       2066.96       0.00352       0.00066       0.00814                                                                                                                                                                                                                                                                                                                                                                 | $0 \times 10^{-6}$                                                                         |
| 4       25Jul2014       1978.34       -0.00486       0.00000       0.00000                  173       27Mar2015       2061.02       0.00237       0.00051       0.00286         174       30Mar2015       2086.24       0.01216       0.00054       0.08052         175       31Mar2015       2067.89       -0.00883       0.00058       0.04520         176       01Apr2015       2059.69       -0.00397       0.00062       0.00973         177       02Apr2015       2066.96       0.00352       0.00066       0.00814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1 \times 10^{-6}$                                                                         |
| 173       27Mar2015       2061.02       0.00237       0.00051       0.00286         174       30Mar2015       2086.24       0.01216       0.00054       0.08052         175       31Mar2015       2067.89       -0.00883       0.00058       0.04520         176       01Apr2015       2059.69       -0.00397       0.00062       0.00973         177       02Apr2015       2066.96       0.00352       0.00066       0.00814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 / 10                                                                                     |
| 173       27Mar2015       2061.02       0.00237       0.00051       0.00286         174       30Mar2015       2086.24       0.01216       0.00054       0.08053         175       31Mar2015       2067.89       -0.00883       0.00058       0.04520         176       01Apr2015       2059.69       -0.00397       0.00062       0.00977         177       02Apr2015       2066.96       0.00352       0.00066       0.00844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |
| 173         27Mar2015         2061.02         0.00237         0.00051         0.00286           174         30Mar2015         2086.24         0.01216         0.00054         0.08052           175         31Mar2015         2067.89         -0.00883         0.00058         0.04526           176         01Apr2015         2059.69         -0.00397         0.00062         0.00973           177         02Apr2015         2066.96         0.00352         0.00066         0.00814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | :                                                                                          |
| 174         30Mar2015         2086.24         0.01216         0.00054         0.08052           175         31Mar2015         2067.89         -0.00883         0.00058         0.04520           176         01Apr2015         2059.69         -0.00397         0.00062         0.00973           177         02Apr2015         2066.96         0.00352         0.00066         0.00814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $5 \times 10^{-6}$                                                                         |
| 175         31Mar2015         2067.89         -0.00883         0.00058         0.04520           176         01Apr2015         2059.69         -0.00397         0.00062         0.00973           177         02Apr2015         2066.96         0.00352         0.00066         0.00814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2 \times 10^{-6}$                                                                         |
| 176         01Apr2015         2059.69         -0.00397         0.00062         0.00973           177         02Apr2015         2066.96         0.00352         0.00066         0.00814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0 \times 10^{-6}$                                                                         |
| 177 02Apr2015 2066.96 0.00352 0.00066 0.00814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $3 \times 10^{-6}$                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $4 \times 10^{-6}$                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :                                                                                          |
| 246 13Jul2015 2099.60 0.01101 0.04684 5.67368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $3 \times 10^{-6}$                                                                         |
| 247 14Jul2015 2108.95 0.00444 0.04984 0.98393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1 \times 10^{-6}$                                                                         |
| 248 15Jul2015 2107.40 -0.00074 0.05302 0.02866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $5 \times 10^{-6}$                                                                         |
| 249 16Jul2015 2124.29 0.00798 0.05640 3.59398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $3 \times 10^{-6}$                                                                         |
| 250 17Jul2015 2126.64 0.00111 0.06000 0.0733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 10-6                                                                                     |

Return vol of the S&P 500 index, estimated after the close on 17Jul2015 (date t), with m = 250,  $\lambda = 0.94$ . Return (4th column) expressed as a decimal. Add the 250 values in the last column to get the estimated variance  $\sigma_t^2$ .

Volatility forecasting

The exponentially-weighted moving average model

# Recursive formula for EWMA volatility estimates

• Recursive formula updates most recent volatility estimate with new data on return magnitude

$$\sigma_t^2 = \lambda \sigma_{t-1}^2 + (1-\lambda)r_t^2$$

- $\rightarrow \text{Easy}$  computation technique, very close to result of full EWMA weighting scheme
- Shows similarity of EWMA to "one-parameter" GARCH
  - But with long-term volatility term  $\gamma = 0, \alpha + \beta = 1$
  - $\lambda$  analogous to eta,  $1-\lambda$  analogous to lpha
  - Shocks to volatility permanent, no long-term "forever" vol
  - Also known as integrated GARCH or IGARCH(1,1)
- EWMA estimate usually close to unrestricted GARCH(1,1) estimate
- "Starter value" (orange in example on next slide):
  - Root mean square, using first month (21 days) of return of observations
  - Starter value method not crucial, converges quickly (esp. for low  $\lambda$ )

Volatility behavior and forecasting

Volatility forecasting

The exponentially-weighted moving average model

#### **Recursive formula for EWMA volatility estimates**

| t    | Date      | $S_t$   | r <sub>t</sub> (%) | $\lambda \sigma_{t-1}^2$ | $(1-\lambda)r_t^2$       | $\sigma_t$ (%) |
|------|-----------|---------|--------------------|--------------------------|--------------------------|----------------|
| 1    | 30Jun2005 | 1191.33 | NA                 | NA                       | NA                       | 0.55583        |
| 2    | 01Jul2005 | 1194.44 | 0.2607             | $0.29041 \times 10^{-4}$ | $0.40783 \times 10^{-6}$ | 0.54267        |
| 3    | 05Jul2005 | 1204.99 | 0.8794             | $0.27682 \times 10^{-4}$ | $4.63987 \times 10^{-6}$ | 0.56853        |
| 4    | 06Jul2005 | 1194.94 | -0.8375            | $0.30383 \times 10^{-4}$ | 4.20873×10 <sup>-6</sup> | 0.58815        |
| 5    | 07Jul2005 | 1197.87 | 0.2449             | $0.32516 \times 10^{-4}$ | $0.35986 \times 10^{-6}$ | 0.57338        |
| 6    | 08Jul2005 | 1211.86 | 1.1611             | $0.30903 \times 10^{-4}$ | $8.08946 \times 10^{-6}$ | 0.62444        |
| 7    | 11Jul2005 | 1219.44 | 0.6235             | $0.36653 \times 10^{-4}$ | $2.33279 \times 10^{-6}$ | 0.62439        |
|      |           |         |                    |                          |                          | -              |
| :    | :         | :       | :                  | :                        | :                        | :              |
| 3644 | 19Dec2019 | 3205.37 | 0.4449             | $0.24206 \times 10^{-4}$ | $1.18778 \times 10^{-6}$ | 0.50392        |
| 3645 | 20Dec2019 | 3221.22 | 0.4933             | $0.23870 \times 10^{-4}$ | $1.45986 \times 10^{-6}$ | 0.50329        |
| 3646 | 23Dec2019 | 3224.01 | 0.0866             | $0.23810 \times 10^{-4}$ | $0.04497 \times 10^{-6}$ | 0.48842        |
| 3647 | 24Dec2019 | 3223.38 | -0.0195            | $0.22424 \times 10^{-4}$ | $0.00229 \times 10^{-6}$ | 0.47356        |
| 3648 | 26Dec2019 | 3239.91 | 0.5115             | $0.21080 \times 10^{-4}$ | $1.56983 \times 10^{-6}$ | 0.47592        |
| 3649 | 27Dec2019 | 3240.02 | 0.0034             | $0.21291 \times 10^{-4}$ | $0.00007 \times 10^{-6}$ | 0.46142        |
| 3650 | 30Dec2019 | 3221.29 | -0.5798            | $0.20014 \times 10^{-4}$ | $2.01673 \times 10^{-6}$ | 0.46937        |
| 3651 | 31Dec2019 | 3230.78 | 0.2942             | $0.20709 \times 10^{-4}$ | $0.51921 \times 10^{-6}$ | 0.46074        |

Return vol of the S&P 500 index, estimated daily using the recursive formula, with  $\lambda = 0.94$ . Initial vol estimate: RMS of the 20 daily returns 01Jul2005–29Jul2005.

- Volatility forecasting
  - The exponentially-weighted moving average model

# GARCH(1,1) and EWMA volatility estimates



Daily estimates of S&P 500 index's annualized return volatility, 30Jun2005 to 31Dec2019. EWMA estimates with  $\lambda=0.94$  GARCH(1,1) estimates use parameters  $\alpha=0.12195, \beta=0.85609, \gamma\bar{\sigma}^2=2.40805\times 10^{-6}$ . The annualized realized return volatility was 15.69 percent over the period.